A Cognitive Model of Data Analysis
and its Implementation as a Human-Computer Interface

Forrest W. Young

L.L. Thurstone Psychometric Laboratory
University of North Carolina
Chapel Hill, North Carolina

Outline

1. Statistical Strategy
2. Cognitive Modes
3. Software Modes
4. ViSta - The Visual Statistics System
 WorkMaps, GuideMaps, SpreadPlots
5. Individual Differences and Data Analysis
6. Proposed Empirical Usability Study
7. Conclusion
1: Statistical Strategy

- **Forrest Young, John Smith & David Lubisky** have proposed a cognitive model for data analysis. It is discussed in:

- We present a definition of **statistical strategy**: A statistical strategy is a formal representation of an expert statistician’s conceptual structuring of:
 1. the **data analysis procedures** needed to accomplish a specified data analysis task;
 2. the **data analyst’s actions** (choices, decisions, etc.) that are possible with the data analysis procedures;
 3. and the **relationships** between the procedures and actions needed to accomplish the data analysis task.
 4. Note that “the **data analysis task**” is to understand a specified data analysis object (data set or data model).

2: Cognitive Modes

- **Cognitive Modes**: Our model involves cognitive modes that differ in terms of the statistical strategies involved.

- The Cognitive Modes are
 1. **Structural** — the cognitive mode that is active when the analyst is constructing, maintaining or revising the data analysis.
 2. **Exploratory** — the cognitive mode that is active when the analyst is exploring the data and generating hypotheses.
 3. **Confirmatory** — the cognitive mode that is active when the analyst is confirming hypotheses.

- Note that
 1. The analyst’s cognitive mode **changes** according to what the analyst is doing during the data analysis.
 2. The **profile** of cognitive modes depends on the analyst’s level of expertise.
3: Software Modes

Software Modes: The data-analysis environment should have visible software modes (windows) to support the different cognitive modes.

- Each software mode is tailored to the requirements of the cognitive mode.
- A key aspect of our work is that the data-analysis environment should change to reflect the analyst’s changing cognitive modes.

Software Modes and Cognitive Modes:
1. **WorkMaps** & **GuideMaps** support the **structure** cognitive mode.
2. **SpreadPlots** support the **exploratory** cognitive mode.
3. **Command Lines** and **alphanumeric reports** support the **confirmatory** cognitive mode.

4: ViSta: The Visual Statistics System

Implementation:

Our cognitive model of data analysis is implemented in **ViSta**:

ViSta runs under
- MS-Windows (3.1 & 95)
- MacOS (68040, PowerPC)
- Unix with X11

Availability:

ViSta is **free** from http://forrest.psych.unc.edu/.
- **Code** may be freely copied and redistributed, with certain restrictions.
- **Documentation** is also available for free from the above site.

Examples

ViSta’s WorkMaps, GuideMaps and SpreadPlots are shown on the next pages.
ViSta’s SpreadPlots - For Exploratory Mode

Observations

<table>
<thead>
<tr>
<th>Location</th>
<th>Y-Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minister</td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td></td>
</tr>
<tr>
<td>Dentist</td>
<td></td>
</tr>
<tr>
<td>Reporter</td>
<td></td>
</tr>
<tr>
<td>Civil Engineer</td>
<td></td>
</tr>
<tr>
<td>Undertaker</td>
<td></td>
</tr>
<tr>
<td>Lawyer</td>
<td></td>
</tr>
<tr>
<td>Physician</td>
<td></td>
</tr>
<tr>
<td>Veteran Worker</td>
<td></td>
</tr>
<tr>
<td>School Teacher</td>
<td></td>
</tr>
<tr>
<td>RR Conductor</td>
<td></td>
</tr>
<tr>
<td>RB Conductor</td>
<td></td>
</tr>
</tbody>
</table>

ViSta’s Text Windows — For Confirmatory Mode

ViDAL: ViSta’s Data Analysis Language (command lines and scripts):

```plaintext
# load-data "animals"
# loading animals
# finished loading "animals"
#<Object: 7204555, prototype = Module-Data-Object-Prototype>
#<class-name = "variable">
#<Object: 7005189, prototype = Module-Data-Object-Prototype>
#<report-model>

Alphanumeric Reports of Statistical Analyses (produced by the code above):

SUMMARY OF FIT:
- R Squared: 0.95
- Adjusted R Squared: 0.95
- Standard Error: 0.95
- Number of Cases: 24
- Degrees of Freedom: 6

ANALYSIS OF VARIANCE: MODEL TEST
- Source: Sum-of-Squares, df, Mean-Square, F-Ratio, P-Value
- Model: 132.54, 17, 7.80, 0.000005
- Error: 5.42, 6, 0.90
- Total: 137.96, 23

ANALYSIS OF VARIANCE: EFFECTS TESTS
- Source: Sum-of-Squares, df, Mean-Square, F-Ratio, P-Value
- Species: 51.04, 4, 12.76, 0.000005
- Subject: 14.38, 2, 7.19, 0.000005
- Session: 47.45, 3, 15.82, 0.000005
- Species*Subject: 2.58, 6, 0.43, 0.90
- Species*Session: 7.45, 6, 1.24, 0.25
- Subject*Session: 9.62, 6, 1.60, 0.15
- Error: 5.42, 23, 0.23
- Total: 137.96, 23
5: Individual Differences & Data Analysis

**Individual Differences:** We argue that data analysts vary in data analysis sophistication.

- We identify four types of analysts: novice, competent, sophisticated, and expert.
- We believe that the sophistication level alters the profile of cognitive modes. For example, we believe that novices would spend the most time in structure mode, while sophisticates and experts would spend the least time in it.

We also believe that different computing environments are needed for the different levels of sophistication.

With ViSta these different computing environments are provided by the combinations of software modes that are needed by the user:

- **Novice** analysts need an environment that provides structured guidance. These users will use GuideMaps & WorkMaps.
- **Competent** analysts need an un-guided but structured environment. These users will use WorkMaps, but not GuideMaps.
- **Sophisticated** analysts need menus and command lines. These users will use Menus, but will use neither GuideMaps nor WorkMaps.
- **Experts** will use command lines and will dispense with Menus as well as GuideMaps and WorkMaps.

6: Proposed Empirical Usability Study

**Our Fundamental Hypothesis:**

The naive data analyst analyzing data in an environment that visually guides and structures the analysis will be more productive, accurate, satisfied, etc., than when the same analyst performs the same analysis without visual guidance and structure.

**A Secondary Hypothesis:**

Data analysts with more experience will spend less time using the visual aids for structure and guidance than those with less experience.

**Subjects:**

Undergraduates in an introductory Psychology Statistics course.

**Design:**

Proposed Empirical Usability Study

Response Measures:

These measures are yet to be defined. They will tap the user’s
1. data analysis productivity
2. data analysis accuracy
3. satisfaction with the data analysis

Hypothesis:

Since these are naive subjects, we predict that the subjects with the most visual aids will perform best. That is, group 1 will perform best, group 2 next best, group 3 worse than 1 and 2, and group 4 the worst.

Stay Tuned:

We will perform this usability study during the coming academic year.

7: Conclusion

Current trends:

Developments in hardware and software will continue to increase the widespread use of data analysis software.
• Thus, the need to understand the data analysis process and to improve data analysis systems will continue to increase.

Our cognitive model of data analysis is a way to understand the data analysis process. We believe it will prove to be a useful way.
• ViSta, our Visual Statistics System is firmly based on our cognitive model and on current developments in computer science.
• Our usability study, is designed to show whether ViSta, and the cognitive model it is based on, are
  1. useful in improving the data analysis process,
  2. useful in improving our understanding of that process.

We hope that we can soon report that empirical results support the usefulness of our cognitive model of data analysis, and its’ software implementation.
PostScript error (--nostringval--, get)